
Simulink® Control Design™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Control Design™ Release Notes
© COPYRIGHT 2004–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

R2017b

PID Autotuning: Deploy PID autotuning algorithm to
embedded software . 1-2

PID Autotuning: Automatically tune PID controller gains for
models with plants that do not linearize 1-3

Simscape Model Trimming: Improve operating point
calculation for Simscape models using new algorithms . . . 1-3

Linearization Advisor: Troubleshoot linearization results
using new interactive tool and commands 1-3

Linear Analysis Tool: Constrain derivatives of model states
that are not at steady state . 1-4

New Example: Design PID controller using estimated
frequency response of Simscape Power Systems model . . . 1-4

Functionality being removed or changed 1-4

R2017a

Custom Constraints and Objective Functions for Trimming
Simulink Models: Calculate operating points with
increased flexibility . 2-2

Bounds on State Derivatives During Trimming: Constrain
derivatives of model states that are not at steady state . . . 2-2

iii

Contents

addoutputspec Command: Add output specification to
multiple operating point specification objects in an
array . 2-2

New Syntax For setBlockParam: Specify multiple block
parameterizations at once . 2-3

R2016b

Batch Trimming for Parameter Variation: Vary model
parameters, and compute multiple operating points using
a single model compilation . 3-2

Improved LPV System Construction: Compute operating
point offsets for model inputs, outputs, states, and state
derivatives during linearization . 3-2

operspec Command: Create array of operating point
specification objects . 3-3

R2016a

Redesigned Control System Designer: Design SISO
controllers for feedback systems in Simulink using
improved interactive workflows . 4-2

Control System Tuner App and systune Command:
Automatically tune single-loop and multiloop control
systems in Simulink to meet design requirements 4-3

TimeUnit property added to slLinearizer and slTuner 4-3

iv Contents

R2015b

Automatic Tuning of 2-DOF PID Controllers with Fixed
Setpoint Weights . 5-2

getTunedValue and setTunedValue commands for accessing
tuned variables within slTuner interface 5-2

getBlockParam and getBlockValue return parameterizations
and values in a structure . 5-3

Functionality being removed or changed 5-4

R2015a

Improved input disturbance rejection with the PID tuning
algorithm . 6-2

Automatic tuning of setpoint weight coefficients in 2-DOF
PID Controller block for improved disturbance
rejection . 6-3

Linear Analysis Tool enhancements for improved linear
analysis workflows . 6-3

Simplified and faster linear analysis of Simulink models
across different model parameter values in Linear Analysis
Tool . 6-5

Option to provide PID gains as external inputs to PID
Controller and PID Controller (2DOF) blocks 6-5

v

R2014b

Unfiltered-derivative option in discrete-time PID Controller
blocks . 7-2

FOH and matched methods for automatic rate conversion in
slTuner interface . 7-2

Improved support for genss block parameterization in
slTuner interface . 7-2

Support for additional multiplication modes in slTuner
parameterization of Gain block . 7-3

R2014a

slTuner interface for improved control system tuning of
Simulink models with systune or looptune functions,
including tuning of gain-scheduled controllers (with
Robust Control Toolbox) . 8-2

Redesigned PID Tuner for improved PID tuning
workflow . 8-2

PID controller tuning using system identification to model
the plant from simulation input-output data in the PID
Tuner . 8-3

Option to specify multiple substitute linearizations of a
Simulink block for batch linearization 8-4

vi Contents

R2013b

Enhanced linearize command, providing faster batch
linearization for model parameter variations 9-2

slLinearizer interface, providing faster batch linearization
for multiple I/O sets . 9-2

linearizeOptions and findopOptions for specifying options
for linearization and operating point search 9-2

Highlight linear analysis points in Linear Analysis Plot
Blocks and Model Verification Blocks 9-3

writeBlockValue command can update Simulink model with
tuned parameter values from generalized LTI model 9-4

Format of BlockData structure identical for snapshot and
operating point linearization . 9-5

Linear Analysis Blocks and Model Verification Blocks save
operating points with computed linear systems 9-6

R2013a

Transient behavior slider added to PID Tuner for increased
control over reference tracking and disturbance rejection
performance . 10-2

Linear analysis points redesigned to clarify I/O types and
loop openings . 10-4

Linear Analysis Blocks and Model Verification Blocks save
data in single object with Simulink model logging
output . 10-6

vii

R2012b

MATLAB code generation from Linear Analysis Tool for
batch estimation of model frequency responses 11-2

Operating point calculation (trimming) from multiple
specifications with only one model compilation 11-2

Export and import operating point specifications in Linear
Analysis Tool . 11-2

MATLAB script or function generation from Linear Analysis
Tool for repeated or batch linearization 11-3

Print plots to MATLAB figure in Linear Analysis Tool 11-3

Commands for setting and querying rate conversion methods
in tunable blocks . 11-3

“Ignore saturation when linearizing” checked by default in
PID Controller and PID Controller (2DOF) blocks 11-4

showBlockValue renamed to showTunable 11-4

R2012a

Create Linearization Input/Output Sets in the Linear
Analysis Tool . 12-2

Specify Feedback Sign for getLoopTransfer Without
Specifying Loop Openings . 12-2

viii Contents

R2011b

Redesigned Graphical Tool for Improved Linear Analysis
Workflows . 13-2

Interactive Frequency Response Estimation and Validation
of Linearization Results . 13-2

Optimization of Model Parameters to Meet Design
Requirements Specified by Model Verification Blocks . . 13-2

Automatic Tuning of PID Controller Blocks in a Referenced
Model . 13-3

Control System Tuning for Simulink Models with looptune or
hinfstruct Using slTunable Interface 13-3

Change in Default Number of Samples in frest.Chirp 13-3

R2011a

Ability to Select Individual Bus Elements as Linearization
Input and Output Points . 14-2

Enhanced LINLFT Command Optionally Returns
Linearization of Excluded Blocks . 14-2

Access to Current Linearization of a Simulink Block for
Specifying Custom Linearization . 14-2

Enhanced PID Controller Blocks Display Compensator
Formula in Block Dialog Box . 14-3

ix

R2010b

New Blocks for Plotting and Verifying Linear System
Characteristics of Simulink Models 15-2

Plotting Linear System Characteristics of Simulink
Models . 15-2

Verifying Linear System Characteristics of Simulink
Models . 15-2

New Tools for Identifying Time-Varying Source Blocks for
Frequency Response Estimation . 15-3

Tuning Tools Update Workspace Variables That Define
Parameters of Tuned Blocks . 15-4

Enhanced PID Tuner Including New Response Plots 15-4

New Demo Illustrating Control Design for a Plant That Has
Parameter Variations . 15-5

R2010a

New Parallel Computing Support For Frequency Response
Estimation . 16-2

New Commands Support Recomputing Frequency Response
Estimation Results at Specific Frequencies 16-2

New frest.simcompare Output Argument Returns Simulation
Output Data From Linear System . 16-2

New Options in Simulink Results Viewer GUI for Viewing
Frequency Response Estimation Results 16-2

New Option for Labeling Bus Signal I/O Names in the SISO
Design Task . 16-3

x Contents

Existing Simulink Blocks Now Have Analytic Jacobians . . . 16-3

Change in Format of Time Series in frestimate Output 16-3

R2009b

New GUI for Tuning New PID Controller Blocks 17-2

New Automated PID Tuning Algorithm 17-2

Ability to Compute Frequency Response of Simulink
Models . 17-2

Ability to Specify the Linearization of Simulink Blocks . . . 17-2

Ability to Design Compensators for Plant Models With Time
Delays . 17-2

New Commands to More Efficiently Compute Multiple
Linearizations . 17-3

Ability to Set Default Plot Type for Linear Analysis Results
from GUI . 17-3

R2009a

Ability to Generate MATLAB Code from the GUI for Creating
Operating Points and Linearizing Models 18-2

Ability to Tune Additional Blocks . 18-2

New Option for Labeling Bus Signal I/O Names in
Linearization Results . 18-2

xi

R2008b

New Upsampling Option for Rate Conversion When
Linearizing Simulink Models . 19-2

Ability to Specify State Order of Linearized Models from the
Command Line . 19-2

Ability to Filter the Linearization Inspector to Show Blocks
in the Linearization Path . 19-2

Ability to Disable the Calculation of Linearization
Diagnostics and Inspector Data in the GUI 19-2

R2008a

New Diagnostic Messages Help You Troubleshoot
Linearization Results . 20-2

Ability to Find Operating Points for Simscape Models 20-2

Updated Error and Warning Message System 20-2

R2007b

Ability to Linearize Models with Model-Reference Blocks by
Any Linearization Method . 21-2

Ability to Design Compensators for Models Containing
Model-Reference Blocks . 21-2

Ability to Generate Linearized Models with Exact Time-Delay
Representations . 21-2

xii Contents

Ability to Linearize Periodic Function-Call Subsystems . . . 21-3

R2007a

Ability to Linearize Using an Operating Point Specified
Directly in a Model . 22-2

Ability to Capture Linearization Snapshots in GUI 22-2

Ability to Perform Control Design at Snapshots in GUI 22-2

Ability to Retrieve Stored Compensator Designs 22-2

R2006b

Bug Fixes

R2006a

Compensator Design in Simulink Is Now Supported 24-2

R14SP3

Control and Estimation Tools Manager Enhanced 25-2

Support for Operating Point Search and Linearization of
Models with Model Reference Blocks 25-2

xiii

R14SP2

Context-Sensitive Help Added . 26-2

View Linearizations in the Control and Estimation Tools
Manager . 26-2

Discretization Methods Added . 26-2

List of Blocks with Preprogrammed Analytic Jacobians
Added . 26-2

Block Name Readability Improved . 26-2

xiv Contents

R2017b

Version: 5.0

New Features

Bug Fixes

Compatibility Considerations

1

PID Autotuning: Deploy PID autotuning algorithm to embedded
software

Use the new Online PID Tuner block to tune a PID controller in real time against a
physical plant or a Simulink model. This block lets you tune a PID controller to achieve a
specified bandwidth and phase margin without a parametric plant model or an initial
controller design.

To achieve model-free tuning, the Online PID Tuner block:

1 Injects a test signal into the plant at the nominal operating point to collect plant
input-output data and estimate frequency response in real time. The test signal is a
combination of sine and step perturbation signals added on top of the nominal plant
input measured when the experiment starts. If the plant is part of a feedback loop,
the block opens the loop during the experiment.

2 At the end of the experiment, tunes PID controller parameters based on estimated
plant frequency responses near the open-loop bandwidth.

3 Updates a PID Controller block or a custom PID controller with the tuned
parameters, allowing you to validate closed-loop performance in real time.

You can generate code and deploy it on hardware, letting you tune with or without
Simulink in the loop. (Doing so requires a code-generation product such as Simulink
Coder™.)

Real-time scenarios for tuning include:

• Deploy the autotuning algorithm as a stand-alone embedded module on your
hardware, removing Simulink from the loop.

• Running the Simulink model with the Online PID Tuner block in external mode,
initiate, monitor, and analyze the autotuning process via Simulink. Then, apply the
tuned parameters and deploy the PID controller.

The Online PID Tuner block works with any asymptotically stable SISO plant, whether
low-order or high-order, with or without time delay, and with or without direct
feedthrough. It can tune any type of PID controller. The block lets you trigger the tuning
process via a start/stop signal, so you can tune and retune your controller at any time.

For more information, see PID Autotuning Basics and the Online PID Tuner block
reference page.

R2017b

1-2

PID Autotuning: Automatically tune PID controller gains for models with
plants that do not linearize

The new Frequency Response Based PID Tuner lets you tune a PID controller using
estimated plant frequency responses near the target open-loop bandwidth. The new tool
simulates the model to collect plant input and output data. It then tunes PID controller
parameters based on plant frequency responses estimated from the data. This tuner is a
useful alternative when PID Tuner cannot linearize the plant at the operating point you
want to use for tuning.

You can use the tuner for PID controller and PID controller (2DOF) blocks to achieve the
bandwidth and phase margin you specify. You can use the tuner with any plant that is
asymptotically stable or has a single integrator, even if disturbances are present in the
plant model. It can tune any type of PID controller in either continuous or discrete time.

For more information, see “Frequency Response Based Tuning Basics”.

Simscape Model Trimming: Improve operating point calculation for
Simscape models using new algorithms

You can now use new steady-state trimming optimizers when finding operating points for
Simscape™ models. These optimizers enforce the consistency of the model initial
condition at each evaluation of the objective function or nonlinear constraint function,
which produces better trimming results for Simscape models. The new optimizers require
Optimization Toolbox™ software.

For more information, see findopOptions and “Find Steady-State Operating Points for
Simscape Models”.

Linearization Advisor: Troubleshoot linearization results using new
interactive tool and commands

The new Linearization Advisor lets you debug incorrect or unexpected linearization
results in the Linear Analysis Tool or at the command line. For example, you can
determine why a model linearizes to zero. To debug linearization results, you can use the
Linearization Advisor to:

• Find blocks in your model that are potentially problematic for linearization. For more
information, see “Identify and Fix Common Linearization Issues”.

1-3

• Find blocks in your model that match specific criteria using custom queries. For more
information, see “Find Blocks in Linearization Results Matching Specific Criteria”.

• Troubleshoot individual block linearizations. For more information, see “Block
Linearization Troubleshooting”.

Linear Analysis Tool: Constrain derivatives of model states that are not
at steady state

When trimming a model using the Linear Analysis Tool, you can now constrain the
derivatives of model states that are not at steady state during trimming. Previously you
could only constrain these derivatives when trimming models at the command line.
Using such constraints, you can trim the state derivatives to known nonzero values or
specify derivative tolerances for states that cannot reach steady state.

For more information, see “Compute Steady-State Operating Point from State
Specifications”.

New Example: Design PID controller using estimated frequency
response of Simscape Power Systems model

To design a controller for a Simscape Power Systems™ plant model, you must first
obtain a linear model of the plant. However, such models typically linearize poorly due to
high-frequency switching components, such as pulse-width modulation (PWM) signal
generators.

The new example “Control Design of a Boost Converter Using Frequency Response Data”
shows how to estimate the frequency response of a Simscape Power Systems model and
design a PID controller using the estimated response.

Functionality being removed or changed
Functionality Result Use This Instead Compatibility Considerations
'graddescent_elim
' value for the
Optimizer parameter
of findopOptions

Still works 'graddescent-elim' Consider replacing instances
of 'graddescent_elim' with
'graddescent-elim'.

R2017b

1-4

R2017a

Version: 4.5

New Features

Bug Fixes

2

Custom Constraints and Objective Functions for Trimming Simulink
Models: Calculate operating points with increased flexibility

You can now add custom constraints and objective functions when trimming Simulink
models. You can specify either custom constraints, a custom objective function, or both.
During trimming, the findop command applies the custom constraints and objective
function in addition to the standard constraints and objective function.

For complex models, you can simplify your custom constraints and custom objective
function by specifying a custom mapping. This mapping defines the subsets of model
states, inputs, and outputs required for computing the constraints and objective function.
Creating a mapping function involves finding the indices of the required states, inputs,
and outputs in the operating point specification for a model. You can find these indices
using the new getStateIndex, getInputIndex, and getOutputIndex commands.

For more information, see Compute Operating Points Using Custom Constraints and
Objective Functions.

Bounds on State Derivatives During Trimming: Constrain derivatives of
model states that are not at steady state

When trimming a model at the command line, you can now constrain the derivatives of
model states that are not at steady state during trimming. Using such constraints, you
can trim the state derivatives to known nonzero values or specify derivative tolerances
for states that cannot reach steady state.

For more information, see operspec and Compute Operating Points from State
Specifications at Command Line.

addoutputspec Command: Add output specification to multiple
operating point specification objects in an array

You can now simultaneously add an output specification for a Simulink model to multiple
operating point specification objects in an array with one call to addoutputspec. To do
so, all of the specification objects must have the same Model property. Previously, you
had to add the output specification to each operating point specification individually,
which required compiling the model multiple times.

R2017a

2-2

https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/getstateindex.html
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/getinputindex.html
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/getoutputindex.html
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/compute-operating-points-using-custom-constraints-and-objective-functions.html
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/compute-operating-points-using-custom-constraints-and-objective-functions.html
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/operspec.html
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/steady-state-operating-points-from-state-specifications.html#bvn6bv2
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/steady-state-operating-points-from-state-specifications.html#bvn6bv2

For more information, see the addoutputspec reference page.

New Syntax For setBlockParam: Specify multiple block
parameterizations at once

You can now specify custom parameterizations for multiple blocks in an slTuner
interface with one call to setBlockParam. The following syntax assigns the
parameterizations tunable_mdl1,tunable_mdl2,...,tunable_mdlN to blocks
blk1,blk2,...,blkN, respectively. The blocks are designated as tuned blocks in an
slTuner interface st.
setBlockParam(st,blk1,tunable_mdl1,blk2,tunable_mdl2,...,blkN,tunable_mdlN)

For more information, see the setBlockParam reference page.

2-3

https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/addoutputspec.html
https://www.mathworks.com/help/releases/R2017a/slcontrol/ug/setblockparam.html

R2016b

Version: 4.4

New Features

Bug Fixes

3

Batch Trimming for Parameter Variation: Vary model parameters, and
compute multiple operating points using a single model compilation

You can now efficiently batch trim a model for variations in model parameters using the
findop command. If the varying parameters are tunable, the software compiles the
model only once, making batch trimming faster, especially for models that are expensive
to compile.

To batch trim your model for a single varying parameter, specify the new param input
argument as a structure with the following fields:

• Name — Parameter name, specified as a character vector or MATLAB® expression
• Value — Parameter sample values, specified as a double array

To vary the value of multiple parameters, specify an array of such structures.

For more information, see Batch Compute Steady-State Operating Points for Parameter
Variation.

Improved LPV System Construction: Compute operating point offsets
for model inputs, outputs, states, and state derivatives during
linearization

You can now compute operating point offsets for model inputs, outputs, states, and state
derivatives when linearizing Simulink models.

To construct a linear parameter-varying (LPV) system, you linearize your model for a
grid of operating points in the scheduling parameter space. Each grid point contains
offset information about model inputs, outputs, states, and state derivatives (continuous-
time) or updates (discrete-time). Starting in R2016b, you no longer manually construct
the offset structure for each grid point. Instead, linearization commands can now return
this offset information.

To obtain operating point offsets, first create a linearizeOptions option set, and set
the new StoreOffsets option to true.

You can then linearize your model and obtain the operating point offsets using the:

• linearize command.

R2016b

3-2

https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/findop.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/batch-compute-steady-state-operating-points-for-parameter-variation.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/batch-compute-steady-state-operating-points-for-parameter-variation.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/linearizeoptions.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/linearize.html

• getIOTransfer, getLoopTransfer, getSensitivity, and getCompSensitivity
linearization commands for an slLinearizer interface.

• Linearization commands for an slTuner interface. In this case, use an
sltunerOptions option set.

For each of these linearization functions, the new info output argument is a structure
with an Offsets field. The new getOffsetsForLPV command extracts the
linearization offsets from the info and converts them into the required format for the
LPV System block.

For an example of LPV construction using operating point offsets, see Approximating
Nonlinear Behavior Using an Array of LTI Systems. For more information on LPV
systems, see Linear Parameter-Varying Models.

operspec Command: Create array of operating point specification
objects

You can now create an array of operating point specification objects using the operspec
command. You can modify the individual specification objects based on your trimming
requirements and batch-compute operating points using a single model compilation.

For an example that uses an array of operating point specification objects, see Designing
a Family of PID Controllers for Multiple Operating Points.

3-3

https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/getiotransfer.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/getlooptransfer.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/getsensitivity.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/getcompsensitivity.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/sllinearizer.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/sltuner.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/sltuneroptions.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/getoffsetsforlpv.html
https://www.mathworks.com/help/releases/R2016b/control/ref/lpvsystem.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/examples/approximating-nonlinear-behavior-using-an-array-of-lti-systems.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/examples/approximating-nonlinear-behavior-using-an-array-of-lti-systems.html
https://www.mathworks.com/help/releases/R2016b/control/ug/linear-parameter-varying-models.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/ug/operspec.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/examples/designing-a-family-of-pid-controllers-for-multiple-operating-points.html
https://www.mathworks.com/help/releases/R2016b/slcontrol/examples/designing-a-family-of-pid-controllers-for-multiple-operating-points.html

R2016a

Version: 4.3

New Features

Bug Fixes

Compatibility Considerations

4

Redesigned Control System Designer: Design SISO controllers for
feedback systems in Simulink using improved interactive workflows

The redesigned Control System Designer app streamlines workflows for designing
controllers for SISO feedback control systems in Simulink using graphical and
automated tuning methods.

For more information on using Control System Designer in Simulink, see:

• Control System Designer
• Control System Designer Tuning Methods

R2016a

4-2

https://www.mathworks.com/help/releases/R2016a/control/ref/controlsystemdesigner-app.html
https://www.mathworks.com/help/releases/R2016a/control/ug/control-system-designer-tuning-methods.html

• Design Compensator Using Automated PID Tuning and Graphical Bode Design
• Analyze Designs Using Response Plots

Control System Tuner App and systune Command: Automatically tune
single-loop and multiloop control systems in Simulink to meet design
requirements

A Robust Control Toolbox™ license is no longer required to use the systune or
looptune commands or to use Control System Tuner. The Control System Tuner app
and the systune command automatically tune control systems from high-level design
goals you specify, such as reference tracking, disturbance rejection, and stability
margins. You can now use these tools to tune control systems modeled in Simulink with a
Simulink Control Design license.

To tune a control system, you specify the tunable elements of your control system. You
then capture your design requirements using the library of tuning goals. The software
jointly tunes all the free parameters of your control system regardless of control system
architecture, the number of feedback loops it contains, or whether it is modeled in
MATLAB or Simulink.

For information about using these tools, see:

• Tuning with Control System Tuner
• Programmatic Tuning

You can also use the systune command to tune gain-scheduled controllers for control
systems in which plant dynamics change with operating conditions or time. For more
information, see Gain Scheduling.

TimeUnit property added to slLinearizer and slTuner

You can now specify time units for slTuner and slLinearizer interfaces using the
new TimeUnit property. This property specifies the time units for linearized models
returned by getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity.

Starting in R2016a, for both slLinearizer and slTuner interfaces, specify time units
using dot notation. For example:

4-3

https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/design-compensator-in-simulink-using-automated-pid-tuning.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/analyze-designs-using-response-plots.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/tuning-with-control-system-tuner.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/programmatic-tuning.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/tuning-gain-scheduled-controllers.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/sltuner.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/sllinearizer.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/getiotransfer.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/getlooptransfer.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/getsensitivity.html
https://www.mathworks.com/help/releases/R2016a/slcontrol/ug/getcompsensitivity.html

sllin = slLinearizer('scdcascade',{'r','u1','u2','y1','y2','y1m','y2m'});
sllin.TimeUnit = 'minutes';

When loading slLinearizer and slTuner interfaces that were saved using a previous
release, the TimeUnit property is set to 'seconds' by default.

R2016a

4-4

R2015b

Version: 4.2.1

New Features

Bug Fixes

Compatibility Considerations

5

Automatic Tuning of 2-DOF PID Controllers with Fixed Setpoint Weights
When you use PID Tuner to tune a PID Controller (2DOF) block, new options let you
select controller types with fixed setpoint weights on the proportional and derivative
terms, b and c. These new options include commonly-used fixed-weight controller
configurations such as I-PD (b = 0, c = 0) and PI-D (b = 1, c = 0).

In R2015a, PID Tuner treated all PID coefficients, including setpoint weights, as free
parameters when you tuned a PID Controller (2DOF) block. In previous releases, you
could only tune 2-DOF controllers using the setpoint-weight values that you set
manually in the block.

For more information about tuning 2-DOF PID controllers, see Design Two-Degree-of-
Freedom PID Controllers. For more information about using PID Tuner, see Introduction
to Automatic PID Tuning.

getTunedValue and setTunedValue commands for accessing tuned
variables within slTuner interface
To access tuned variables within an slTuner interface, use the new getTunedValue
and setTunedValue commands. Tuned variables are any Control Design Blocks
involved in the parameterization of a tuned Simulink block, either directly or through a
generalized parametric model.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue now provides access only to the overall value of the block
parameterization. To access the values of the tuned variables within the block
parameterization, use getTunedValue.

• setBlockValue can no longer be used to modify the block value. Use
setTunedValue to modify the values of tuned variables within the block
parameterization.

For Simulink blocks parameterized by a Control Design Block, the block itself is the
tuned variable. To modify the block value, you can use either setBlockValue or
setTunedValue. Similarly, you can retrieve the block value using either
getBlockValue or getTunedValue.

Also, the syntax setBlockValue(st,M), where M is a generalized model, has been
replaced. To set the values of tunable parameters within a custom parameterization

R2015b

5-2

https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/designing-two-degree-of-freedom-pid-controllers.html
https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/designing-two-degree-of-freedom-pid-controllers.html
https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/introduction-to-automatic-pid-tuning.html
https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/introduction-to-automatic-pid-tuning.html
https://www.mathworks.com/help/releases/R2015b/control/ug/generalized-matrices-and-models.html#bsxmtrr
https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/getblockvalue.html
https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/gettunedvalue.html
https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/setblockvalue.html
https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/settunedvalue.html

using a generalized model, use the new setTunedValue(st,M) syntax. The
setBlockValue(st,M) syntax will continue to work in future releases.

Compatibility Considerations
• If your code uses getBlockValue or setBlockValue to access the values of tunable

elements within blocks parameterized by a generalized model, modify your code to use
the new getTunedValue and setTunedValue commands. For example, when
accessing or modifying the tunable parameter'Ki' in the slTuner interface st,
make the following code substitutions:
Old Syntax Result New Syntax
KiTuned =
getBlockValue(st,'Ki'
)

Error KiTuned =
getTunedValue(st,'Ki'
)

setBlockValue(st,'Ki'
,10)

Error setTunedValue(st,'Ki'
,10)

• If your code uses setBlockValue(st,M) to set the values of tunable parameters
within an slTuner interface, consider modifying your code to use the new
setTunedValue(st,M) syntax.

getBlockParam and getBlockValue return parameterizations and values
in a structure

New syntax of the getBlockParam command returns a structure that contains all block
parameterizations of an slTuner interface. The syntax returns a structure, S, whose
field names are the names of the tunable blocks in the sltuner interface, st.

S = getBlockParam(st)

For more information, see the getBlockParam reference page.

Similarly, a new syntax of the getBlockValue command returns a structure that
contains the current values of all block parameterizations of an slTuner interface. The
syntax returns a structure, S, whose field names are the names of the tunable blocks in
the sltuner interface, st.

S = getBlockValue(st)

5-3

https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/getblockparam.html

You can use this syntax to transfer the tuned values from one slTuner interface to
another slTuner interface with the same tuned block parameterizations:

S = getBlockValue(st1);
setBlockValue(st2,S);

For more information, see the getBlockValue reference page.

Compatibility Considerations

Previously, the syntax getBlockParam(st) returned the current block
parameterizations of st as a vector.

[Param1,Param2,...] = getBlockParam(st)

Now, using this syntax causes an error. You can still obtain block parameterizations in a
list by specifying the block names as input arguments, as follows:

[Param1,Param2,...] = getBlockParam(st,Blkname1,Blkname2,...)

Similarly, the syntax getBlockValue(st) previously returned the current values of the
block parameterizations of st as a vector.

[Val1,Val2,...] = getBlockValue(st)

Now, using this syntax causes an error. You can still obtain block parameterization
values in a list by specifying the block names as input arguments, as follows:

[Val1,Val2,...] = getBlockValue(st,Blkname1,Blkname2,...)

Functionality being removed or changed
Functionality Res

ult
Use This Instead Compatibility Considerations

val =
getBlockValue(st,b
lk)
with blk representing
a tunable element in
slTuner interface st.

Erro
r

val =
getTunedValue(st
,blk)

See “getTunedValue and setTunedValue
commands for accessing tuned variables
within slTuner interface” on page 5-2 for
more information.

R2015b

5-4

https://www.mathworks.com/help/releases/R2015b/slcontrol/ug/getblockvalue.html

Functionality Res
ult

Use This Instead Compatibility Considerations

setBlockValue(st,b
lk,val)
with blk representing
a tunable element in
slTuner interface st.

Erro
r

setTunedValue(st
,blk,val)

See “getTunedValue and setTunedValue
commands for accessing tuned variables
within slTuner interface” on page 5-2 for
more information.

setBlockValue(st,M
)

Still
Wor
ks

setTunedValue(st
,M)

See “getTunedValue and setTunedValue
commands for accessing tuned variables
within slTuner interface” on page 5-2 for
more information.

[Param1,Param2,...
] =
getBlockParam(st)

Erro
r

S =
getBlockParam(st
)

getBlockParam(st) now returns a
structure that contains the current
parameterizations of all tunable blocks in
st. Update scripts and functions that use
getBlockValue(st) to use an output
structure.

[Val1,Val2,...] =
getBlockValue(st)

Erro
r

S =
getBlockValue(st
)

getBlockValue(st) now returns a
structure that contains the current values of
the parameterizations of all tunable blocks
in st. Update scripts and functions that use
getBlockValue(st) to use an output
structure.

5-5

R2015a

Version: 4.2

New Features

Bug Fixes

6

Improved input disturbance rejection with the PID tuning algorithm
Controller tuning with the PID Tuner app now yields better disturbance rejection by
default. For a given target phase margin, the tuning algorithm selects PID coefficients
that achieve a balance between reference tracking and input disturbance rejection. If you
require more disturbance rejection or better reference tracking than the default
algorithm provides, PID Tuner has a new Design Focus option. Use this option to alter
the balance that the tuning algorithm sets between reference tracking and input
disturbance rejection. For instance, setting the design focus to reference tracking
improves the reference tracking performance of the tuned controller, with some cost to
disturbance rejection. Similarly, setting the design focus to input disturbance rejection
improves rejection with some cost to reference tracking. Changing design focus is most
effective when tuning PID controllers, rather than controllers with fewer free
parameters, such as PI.

To use the Design Focus option in PID Tuner, click Options and select a design focus
from the Focus menu.

You can still use the Response Time and Transient Behavior sliders to further adjust
the balance between reference tracking and input disturbance rejection.

R2015a

6-2

For more information about using the design focus option, see Tune PID Controller to
Favor Reference Tracking or Disturbance Rejection.

For more information about using PID Tuner, see Introduction to Automatic PID Tuning.

Automatic tuning of setpoint weight coefficients in 2-DOF PID Controller
block for improved disturbance rejection
You can now use PID Tuner to tune all parameters of the PID Controller (2DOF) block,
including the setpoint weights b and c. When you open the PID Tuner app from a PID
Controller (2DOF) block in your Simulink model, the software automatically tunes all
parameters of the block to achieve a balance between performance and robustness. When
you use the Response Time and Transient Behavior sliders to adjust that balance, PID
Tuner adjusts all parameters, including b and c if necessary. Previously, the software
tuned only the PID gains and filter coefficients, and you had to adjust the setpoint
weights manually.

For more information about 2-DOF PID controllers, see Design Two-Degree-of-Freedom
PID Controllers. For more information about using PID Tuner, see Introduction to
Automatic PID Tuning.

Linear Analysis Tool enhancements for improved linear analysis
workflows
The redesigned Linear Analysis Tool streamlines workflows for linear analysis tasks
such as finding steady-state operating points (trimming), linearization, and frequency-
response estimation. Improvements include:

• The Linear Analysis and Estimation tabs are enhanced with a plot gallery for
quick, visual selection of plot types for viewing linearized or estimated system
responses.

6-3

https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/tune-pid-controller-to-balance-tracking-and-disturbance-rejection-performance.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/tune-pid-controller-to-balance-tracking-and-disturbance-rejection-performance.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/introduction-to-automatic-pid-tuning.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/designing-two-degree-of-freedom-pid-controllers.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/designing-two-degree-of-freedom-pid-controllers.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/introduction-to-automatic-pid-tuning.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/introduction-to-automatic-pid-tuning.html

• The new Plots and Results tab also provides a gallery of plot types for creating
additional plots of system responses. In the Plots and Results tab, select a dynamic
system model from the MATLAB Workspace or the Linear Analysis Workspace. The
plot gallery updates to reflect the available plots for the type of system you have
selected. If the system you select was created in the Linear Analysis Tool session, the
result viewer is also available in the plot gallery.

To access the Linear Analysis Tool from a Simulink model, in the Simulink Editor, select
Analysis > Control Design > Linear Analysis. See the following topics for more
information about using Linear Analysis Tool for:

• Computing operating points — Steady-State Operating Points (Trimming) from
Specifications

• Exact linearization — Linearize Simulink Model at Model Operating Point
• Frequency Response Estimation — Estimate Frequency Response Using Linear

Analysis Tool

R2015a

6-4

https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/steady-state-operating-points-trimming-from-specifications.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/steady-state-operating-points-trimming-from-specifications.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/linearize-simulink-model.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/estimate-frequency-response-using-linear-analysis-tool.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/estimate-frequency-response-using-linear-analysis-tool.html

Simplified and faster linear analysis of Simulink models across different
model parameter values in Linear Analysis Tool

You can now use the Linear Analysis Tool to efficiently batch linearize a model at
varying plant or controller parameter values. Batch linearization refers to extracting
multiple linearizations from a model for various combinations of model parameters.
Using the new parameter-variation capability of Linear Analysis Tool, you can obtain
multiple linearizations for varying values of any parameter in your Simulink model. For
example, you can linearize your system at multiple values of plant coefficients, controller
gains, or controller sample times.

Use Linear Analysis Tool response plots to examine time-domain and frequency-domain
responses of the resulting linear models. For instance, you can compute and plot
linearizations for the plant model, overall closed-loop transfer function, and plant
disturbance rejection for varying plant and controller parameter values.

In cases where the varying parameters are all tunable, Linear Analysis Tool requires
only one model compilation to compute multiple open-loop and closed-loop transfer
functions for varying parameter values. This efficiency is especially advantageous for
models that are expensive to compile repeatedly.

This new functionality brings the batch linearization capability of the slLinearizer
interface and the linearize command to the Linear Analysis Tool. Any parameter
variations you specify in Linear Analysis Tool are included in MATLAB code you
generate from the session.

For more information about performing varying parameters for linearization with the
Linear Analysis Tool, see Batch Linearize Model for Parameter Value Variations Using
Linear Analysis Tool.

For more information about batch linearization, see What Is Batch Linearization?.

Option to provide PID gains as external inputs to PID Controller and
PID Controller (2DOF) blocks

A new option in the PID Controller and PID Controller (2DOF) blocks adds signal inputs
for the PID gains and filter coefficients. Previously the PID parameters had to be entered
in the block dialog box as numerical values or MATLAB expressions. Enabling external
inputs for the parameters allows you to compute PID gains and filter coefficients
externally to the block and provide them to the block as signal inputs.

6-5

https://www.mathworks.com/help/releases/R2015a/simulink/ug/using-tunable-parameters.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/sllinearizer.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/linearize.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/vary-parameter-values-and-obtain-multiple-transfer-functions-using-linear-analysis-tool.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/vary-parameter-values-and-obtain-multiple-transfer-functions-using-linear-analysis-tool.html
https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/batch-linearization-for-linear-analysis.html

External gain input is useful, for example, when you want to map a different PID
parameterization to the PID gains of the block. You can also use external gain input to
implement gain-scheduled PID control, in which controller gains are determined by logic
or other calculation in the Simulink model and passed to the block.

To enable external inputs for the PID coefficients, in the block dialog box, in the
Controller parameters section, in the Source menu, select external.

When you click OK or Apply, the new inputs appear on the block in the Simulink model.

R2015a

6-6

For an example illustrating the use of external gain inputs for gain scheduling, see
Implement Gain-Scheduled PID Controllers. For more information about using the PID
controller blocks, see the PID Controller and PID Controller (2DOF) block reference
pages.

6-7

https://www.mathworks.com/help/releases/R2015a/slcontrol/ug/implement-gain-scheduled-pid-controllers.html
https://www.mathworks.com/help/releases/R2015a/simulink/slref/pidcontroller.html
https://www.mathworks.com/help/releases/R2015a/simulink/slref/pidcontroller2dof.html

R2014b

Version: 4.1

New Features

Bug Fixes

7

Unfiltered-derivative option in discrete-time PID Controller blocks
You can now specify an unfiltered derivative term in the discrete-time PID Controller
and PID Controller (2DOF) blocks. Previously, these blocks required a finite derivative
filter constant on the derivative term.

To specify an unfiltered derivative, in the Main pane of the block dialog box, uncheck
Use filtered derivative. Unchecking this option replaces the derivative filter with a
discrete differentiator. The option is checked by default for compatibility with previous
versions.

For more information about the blocks, see PID Controller and PID Controller (2DOF).

FOH and matched methods for automatic rate conversion in slTuner
interface
When you use systune to tune a Simulink model, block tuning is performed at the rate
specified in the slTuner interface to the model (see the Ts property of slTuner). When
you write the tuned values back to Simulink, if the sample time of the Simulink block
differs from the sample time used for tuning, a rate conversion takes place
automatically . You can use the setBlockRateConversion command to specify the rate
conversion method.

In addition to the ZOH (zero-order hold) and Tustin methods,
setBlockRateConversion now supports FOH (first-order hold) and matched methods.
The matched method is only available for SISO blocks.

For more information, see the setBlockRateConversion reference page.

Improved support for genss block parameterization in slTuner interface
When you assign a custom parameterization of a tunable block in an slTuner interface
to a Simulink model, you can now use the setBlockValue command to set the value of a
particular tunable element within the custom parameterization of the block. Similarly,
you can now use getBlockValue to query the value of a tunable element within the
block.

Previously, setBlockValue and getBlockValue could only set or query the current
value of the entire parameterization of a Simulink block. There was no way to set or
query the current value of a single tunable element of a custom parameterization.

R2014b

7-2

https://www.mathworks.com/help/releases/R2014b/simulink/slref/pidcontroller.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/pidcontroller2dof.html
https://www.mathworks.com/help/releases/R2014b/slcontrol/ug/setblockrateconversion.html

For more information, see the reference pages for setBlockValue and getBlockValue.

Support for additional multiplication modes in slTuner parameterization
of Gain block

When you create an slTuner interface to a Simulink model that contains a Gain block
with vector inputs and outputs, a parameterization is assigned to the block for any of the
following multiplication modes of the block:

• Element-wise (K.*u)
• Matrix (K*u)
• Matrix (u*K)

(The multiplication mode is specified in the Main tab of the block dialog box.) Previously,
the slTuner interface could only assign a parametrization for Element-wise (K.*u)
and Matrix (K*u) modes.

You can now set parameter values for the Gain block in the slTuner interface using
setBlockValue for all these multiplication modes. Previously,
setBlockValue(ST,blockID,value) worked only for Matrix (K*u) mode.

7-3

https://www.mathworks.com/help/releases/R2014b/slcontrol/ug/setblockvalue.html
https://www.mathworks.com/help/releases/R2014b/slcontrol/ug/getblockvalue.html

R2014a

Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

8

slTuner interface for improved control system tuning of Simulink models
with systune or looptune functions, including tuning of gain-scheduled
controllers (with Robust Control Toolbox)

Use the new slTuner interface for tuning control systems in Simulink models. This
interface replaces slTunable. The slTuner interface allows you to:

• Tune model blocks and subsystems to meet tuning goals using the systune and
looptune functions. (Both functions require a Robust Control Toolbox license.)

• Perform robust tuning of a controller against a set of plant models using systune.
You can configure an slTuner interface to vary model parameter values and
operating points. When you call systune for the interface, the software returns a
controller that satisfies the tuning goals for all the specified model variations.

• Validate the controller design by examining the transfer function for relevant I/O sets
using the getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity functions.

slTuner, similar in design to slLinearizer, simplifies I/O management in the
controller tuning and validation workflow. You specify signals of interest as analysis
points. You can use these analysis points to configure design requirements and specify
linearization inputs/outputs when you extract transfer functions.

For more information on command-line tuning of Simulink models with slTuner, see
Command-Line Control System Tuning.

Compatibility Considerations

The slTunable interface will continue to work for backward compatibility. However,
only the slTuner interface will be supported and enhanced in future releases. Therefore,
adoption of the slTuner interface is strongly recommended.

For documentation of the slTunable interface, see slTunable in the R2013b
documentation.

Redesigned PID Tuner for improved PID tuning workflow

The redesigned PID Tuner streamlines workflows for automatic and interactive tuning of
PID controllers. Improvements include:

R2014a

8-2

https://www.mathworks.com/help/releases/R2014a/slcontrol/ug/sltuner.html
https://www.mathworks.com/help/releases/R2014a/slcontrol/ug/sllinearizer.html
https://www.mathworks.com/help/releases/R2014a/slcontrol/fixed-structure-control-system-tuning.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/sltunableclass.html

• Additional options to import a plant into the PID Tuner. These options are especially
useful if your Simulink plant model linearizes to zero. You can:

• Relinearize the model using a simulation snapshot operating point that you find
based on the controller error signal.

• Identify an LTI plant model from simulated input-output data. This option
requires a System Identification Toolbox™ license.

For more information about this option, see “PID controller tuning using system
identification to model the plant from simulation input-output data in the PID
Tuner” on page 8-3.

• Ability to compare the response of multiple plant models to the same controller. For
example you can test the robustness of a controller to plant model uncertainty.
Suppose you have tuned a controller for one plant model. You can import variations of
the plant model into the PID Tuner. Then, you can plot the controller response for all
the plant models in a single figure to compare the controller performance.

• Ability to display multiple response plots simultaneously. For example, you can tune
a controller while simultaneously monitoring the reference tracking and output
disturbance rejection plots.

To access the PID Tuner, in the PID block dialog box, click Tune.

For more information about using the PID Tuner, see PID Controller Tuning.

PID controller tuning using system identification to model the plant from
simulation input-output data in the PID Tuner

If you have System Identification Toolbox software, you can use the PID Tuner to
identify a linear plant model from data obtained by simulating the Simulink model. You
use the identified model to tune your PID Controller block. For example, suppose you
want to tune the PID controller block in a model that contains a Triggered Subsystem
block. The analytical block-by-block linearization algorithm does not support event-based
subsystems and therefore the model linearizes to zero. Now, you can simulate the plant
response for a specified input and use this simulated data to identify the plant model.
The PID Tuner automatically tunes the PID controller for the identified model. You can
then interactively adjust the performance of the tuned control system, and save the
identified plant and tuned controller.

8-3

https://www.mathworks.com/help/releases/R2014a/slcontrol/automatic-pid-tuning.html

For an example showing how to use system identification to model a plant for PID
tuning, see Interactively Estimate Plant from Measured or Simulated Response Data.

Option to specify multiple substitute linearizations of a Simulink block
for batch linearization

The method for specifying substitute linearizations for blocks and model subsystems is
simplified. Also, you can specify multiple substitute linearizations for a block and obtain
a linearization for each substitution (batch linearization). Use this functionality, for
example, to study the effects of varying the linearization of a Saturation block on the
model dynamics.

You can specify a substitute linearization as an input to the linearize command and as
the BlockSubstitutions property of the slLinearizer and slTuner interfaces. Use
a structure with the following fields:

• Name — Full blockpath, specified as a string. For example,
'scdenginectrlpidblock/valve timing'.

• Value — Substitute linearization, specified as one of the following:

• Double, for example 1. Use for SISO models only. For models having either
multiple inputs or multiple outputs, or both, use an array of doubles. For example,
[0 1]. Each array entry specifies a linearization for the corresponding I/O
combination.

• LTI model, with I/Os that match the block specified by Name. For example,
zpk([],[-10 -20],1).

• Array of LTI models. For example, [zpk([],[-10 -20],1); zpk([],[-10
-50],1)].

If you vary model parameter values, then the LTI model array size must match
the grid size.

• Structure with fields: Specification, Type, and ParameterNames,
ParameterValues. For an example, see Specifying Linearization for Model
Components Using System Identification.

Previously, the software supported only this method of specifying a substitute
linearization.

R2014a

8-4

https://www.mathworks.com/help/releases/R2014a/slcontrol/ug/interactively-estimate-plant-from-measured-or-simulated-response-data.html
https://www.mathworks.com/help/releases/R2014a/slcontrol/ug/linearize.html
https://www.mathworks.com/help/releases/R2014a/slcontrol/ug/sllinearizer.html
https://www.mathworks.com/help/releases/R2014a/slcontrol/ug/specifying-linearization-for-model-components-using-system-identification.html
https://www.mathworks.com/help/releases/R2014a/slcontrol/ug/specifying-linearization-for-model-components-using-system-identification.html

To specify substitute linearizations for multiple blocks, create an array of the described
structure.

This improvement is also applicable in the Simulink editor when you right-click a block
and select Linear Analysis > Specify Selected Block Linearization. Select the
Specify block linearization using one of the following check box. When you select
MATLAB Expression in the list, you can now specify a double, an array of doubles, an
LTI model, or an array of LTI models in the text box.

8-5

R2013b

Version: 3.8

New Features

Bug Fixes

Compatibility Considerations

9

Enhanced linearize command, providing faster batch linearization for
model parameter variations

linearize now allows you to efficiently batch linearize a model for variations in model
parameter values. Use this feature to study the effects of varying a model parameter
value. For example, you can vary plant parameter values and analyze the controller
robustness to plant model uncertainty. The software uses only one model compilation,
making batch linearization faster, especially for models that are expensive to compile
repeatedly.

For more information, see Batch Linearize Model for Parameter Value Variations Using
linearize and Specify Parameter Samples.

slLinearizer interface, providing faster batch linearization for multiple I/O
sets

Use the slLinearizer interface to efficiently batch linearize a model. The interface
includes linearization commands that you use to extract any open-loop or closed-loop
transfer function for varying operating points and parameter values. For instance, you
can extract linearizations for the plant model, overall closed-loop transfer function, and
plant disturbance rejection, at multiple operating points, for varying plant/controller
parameter values.

slLinearizer extends the functionality of linearize and uses only one model
compilation to compute multiple open-loop and closed-loop transfer functions for varying
operating points and parameter values. This efficiency is especially advantageous for
models that are expensive to compile repeatedly.

For examples that illustrate how to use slLinearizer, see:

• Vary Parameter Values and Obtain Multiple Transfer Functions Using slLinearizer
• Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer.

linearizeOptions and findopOptions for specifying options for
linearization and operating point search

The new options commands linearizeOptions and findopOptions replace the
command linoptions. This change simplifies the use of options for linearization and

R2013b

9-2

https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/linearize.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/batch-linearization-using-linearize.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/batch-linearization-using-linearize.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/ways-to-generate-parameter-samples.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/sllinearizer.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/linearize-model-for-varying-parameters-and-io-sets-using-sllinearizer-to-be-retitled.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/batch-linearization-for-multiple-io-sets-using-sllinearizer.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/linearizeoptions.html
https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/findopoptions.html

operating point search by separating the available options for each task. See the
reference pages for these options commands for more information about how to use them.

Compatibility Considerations

The linoptions command will be removed in a future release, and issues a warning as
of this release. If you have scripts or functions that use linoptions, consider updating
them to instead use linearizeOptions for linearization and findopOptions for
operating point search.

Highlight linear analysis points in Linear Analysis Plot Blocks and Model
Verification Blocks

The Linear Analysis Plot Blocks and Model Verification Blocks now include a button that
highlights signals in your Simulink model which you have selected as linearization
inputs or outputs. This highlighting makes it easier to identify linear analysis signals in
your model when you are working in the block dialog box.

In the Linearizations tab of the block, select a signal from the Linearization inputs/
outputs table. Then click the highlight button:

9-3

The block that originates the selected signal is highlighted in the Simulink model.

writeBlockValue command can update Simulink model with tuned
parameter values from generalized LTI model

The writeBlockValue method of slTunable has new syntaxes that allow you to
update a Simulink model with tunable parameter values from a generalized LTI model.

writeBlockValue(ST,M) updates the current values of the tunable parameters in an
slTunable interface, ST, to match their values in a generalized model, M. The command
also updates the corresponding parameters in the Simulink model associated with ST.

R2013b

9-4

writeBlockValue(ST,M,BlockID) updates only the parameters in the specified
blocks.

These syntaxes are useful when you use Robust Control Toolbox tuning commands such
as systune, looptune, or hinfstruct to tune system responses that you extract from
the slTunable interface. For example, suppose you extract a particular closed-loop
response from an slTunable interface using getIOTransfer. You then use
hinfstruct to tune this closed-loop response. To validate the tuned parameters in the
full non-linear Simulink model, use writeBlockValue to write the tuned parameter
values back into the model.

For more information, see the slTunable.writeBlockValue reference page.

Format of BlockData structure identical for snapshot and operating
point linearization

When you specify the linearization of a block as a function, the input argument to that
function is the structure BlockData, whose fields are given in the linearize reference
page. The field BlockData.Inputs is now a data structure array, regardless of whether
you are linearizing the model at a snapshot time or at a specified operating point. The
data structure BlockData.Inputs has the following fields:

• BlockName — Contains the name of the block whose output connects to the input of
the block whose linearization you specifying. For example, if you are specifying the
linearization of a block called Dynamics, and the second input of Dynamics is driven
by a signal from a block called Torque, then BlockData.Inputs(2).BlockName is
the full block path name of Torque.

• PortIndex — Identifies which output port of BlockName corresponds to the input of
the block whose linearization you are specifying. For example, if the third output from
Torque drives the second input of Dynamics, then
BlockData.Inputs(2).PortIndex = 3.

• Values — The value of the signal specified by BlockName and PortIndex. If this
signal is a vector-valued signal, Values is a vector of corresponding dimension.

Previously, BlockData.Inputs had this format only for snapshot linearization. For
linearization at a specified operating point, BlockData.Inputs was a numeric array of
input values.

9-5

https://www.mathworks.com/help/releases/R2013b/slcontrol/ug/sltunable.writeblockvalue.html

Compatibility Considerations

If you have scripts or functions that assume BlockData.Inputs is a numeric array,
update your code to reflect the new structure of BlockData.Inputs.

Linear Analysis Blocks and Model Verification Blocks save operating
points with computed linear systems

The data logging capability of the Linear Analysis Blocks or Model Verification Blocks
now includes an option to save the operating points corresponding to the computed linear
systems. When you check Save data to workspace and Save operating points for
each linearization in the Logging tab of the block dialog box, a field named
operatingPoints is added to the data structure containing the logged data. This field
stores the operating point corresponding to each logged linear system in the data
structure.

R2013b

9-6

R2013a

Version: 3.7

New Features

Bug Fixes

Compatibility Considerations

10

Transient behavior slider added to PID Tuner for increased control over
reference tracking and disturbance rejection performance

The PID Tuner now has a Transient behavior slider for emphasizing either reference
tracking or disturbance rejection. When you open the PID Tuner, the tool starts in the
Time domain design mode, displaying a step plot of the reference tracking response. The
new Transient behavior slider is beneath the Response time slider.

R2013a

10-2

You can use the Transient behavior slider when:

10-3

• The tuned system’s disturbance rejection response is too sluggish for your
requirements. In this case, try moving the Transient behavior slider to the left to
make the controller more aggressive at disturbance rejection.

• The tuned system’s reference tracking response has too much overshoot for your
requirements. In this case, try moving the Transient behavior slider to the right to
increase controller robustness and reduce overshoot.

In Frequency domain design mode, the PID Tuner has Bandwidth and Phase
margin sliders. These sliders are the frequency-domain equivalents of the Response
time and Transient behavior sliders, respectively.

For an example illustrating the balance between reference tracking and disturbance
rejection, see Tune PID Controller to Balance Tracking and Disturbance Rejection
Performance.

Linear analysis points redesigned to clarify I/O types and loop openings

Linear analysis points (linearization inputs, outputs and loop-opening locations), that
you use to specify the portion of the Simulink model to linearize, have been redesigned.
The redesign clarifies what the I/O point means and helps you select the right type of
point to compute the desired response.

The analysis points that you select in the Linear Analysis Points submenu or the
Linear Analysis Tool have been renamed. The points also have updated icons that
correspond to markers that appear on your model to indicate the linear analysis point
type. The corresponding strings for the type argument in the linio command have also
been renamed.

R2013a

10-4

https://www.mathworks.com/help/releases/R2013a/slcontrol/ug/tune-pid-controller-to-balance-tracking-and-disturbance-rejection-performance.html
https://www.mathworks.com/help/releases/R2013a/slcontrol/ug/tune-pid-controller-to-balance-tracking-and-disturbance-rejection-performance.html
https://www.mathworks.com/help/releases/R2013a/slcontrol/ug/linio.html

You can also specify inputs or outputs as open loop while specifying the I/O type. For
example:

• In the Linear Analysis Points submenu or the Linear Analysis Tool, select Open-
loop Output.

• At the command line, type io(2)=linio('magball/Magnetic Ball Plant',
1,'openoutput').

Thus, when performing tasks such as plant linearization or open-loop linearization, you
do not need to specify the opening separately.

The following table maps the renamed analysis points to the point types in previous
releases:

Command Line Linear Analysis Points Submenu or Linear
Analysis Tool

Previous Releases R2013a Previous Releases R2013a
type = 'in' and
openloop = 'on'

type =
'openinput'

Input Point and
Open Loop

Open-loop Input

type = 'in' and
openloop = 'off'

type = 'input' Input Point Input
Perturbation

10-5

Command Line Linear Analysis Points Submenu or Linear
Analysis Tool

Previous Releases R2013a Previous Releases R2013a
type = 'out' and
openloop = 'on'

type =
'openoutput'

Output Point and
Open Loop

Open-loop Output

type = 'out' and
openloop = 'off'

type = 'output' Output Point Output
Measurement

type = 'inout'
and openloop =
'off'

type =
'sensitivity'

Input-Output Sensitivity

type = 'outin'
and openloop =
'on'

type =
'looptransfer'

Output-Input and
Open Loop

Loop Transfer

type = 'outin'
and openloop =
'off'

type =
'compsensitivity
'

Output-Input Complementary
Sensitivity

type = 'none' and
openloop = 'on'

type =
'loopbreak'

Open Loop Loop Break

Use the context-sensitive help, or see the linio reference page to assist you in selecting
an analysis point. For examples on how to specify linear analysis points graphically, see
Specify Portion of Model to Linearize in Simulink Model and Specify Portion of Model to
Linearize in Linear Analysis Tool.

Linear Analysis Blocks and Model Verification Blocks save data in
single object with Simulink model logging output

The data logging option in the Linear Analysis Blocks or Model Verification Blocks saves
linear systems computed by the blocks. As of R2013a, when you configure your Simulink
model to save simulation output in a single object, the logging output of these blocks is
saved as a field in the simulation output object. Previously, these blocks saved logging
output as a separate variable in the MATLAB workspace, regardless of the model
configuration settings.

For more information about data logging in Simulink, see Export Simulation Data and
the Simulink.SimulationOutput reference page.

R2013a

10-6

https://www.mathworks.com/help/releases/R2013a/slcontrol/ug/linio.html
https://www.mathworks.com/help/releases/R2013a/slcontrol/ug/specify-model-portion-to-linearize.html#btc1pgs
https://www.mathworks.com/help/releases/R2013a/slcontrol/ug/specify-model-portion-to-linearize.html#bs_hlyo
https://www.mathworks.com/help/releases/R2013a/slcontrol/ug/specify-model-portion-to-linearize.html#bs_hlyo
https://www.mathworks.com/help/releases/R2013a/simulink/ug/exporting-simulation-data.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/simulink.simulationoutputclass.html

Compatibility Considerations

If you have a Simulink model which you have configured to save simulation output in a
single object, and you use data logging option in a Linear Analysis Block or Model
Verification Block, the resulting logging output is no longer a separate variable in the
MATLAB workspace. If you use the logging output in any scripts, update those scripts to
use the Simulink.SimulationOutput object instead of a separate variable.

10-7

R2012b

Version: 3.6

New Features

Bug Fixes

Compatibility Considerations

11

MATLAB code generation from Linear Analysis Tool for batch
estimation of model frequency responses

You can now generate MATLAB code for frequency response estimation from the Linear
Analysis Tool. You can generate either a MATLAB script or a MATLAB function.
Generated MATLAB scripts are useful when you want to programmatically reproduce a
result you obtained interactively. A generated MATLAB function allows you to perform
multiple estimations with systematic variations in estimation parameters such as
operating point (batch estimation).

For more information, see Generate MATLAB Code for Repeated or Batch Frequency
Response Estimation.

Operating point calculation (trimming) from multiple specifications with
only one model compilation

The findop command now can find operating points for multiple operating point
specifications with a single model compilation. This feature allows you to find multiple
trimmed operating points without the overhead of compiling the model for each trimming
computation. For an example, see Batch Compute Operating Points with Single Model
Compilation.

For more information about operating point calculation and operating point
specifications, see the findop and operspec reference pages.

Export and import operating point specifications in Linear Analysis Tool

When you modify an operating point specification in the Linear Analysis Tool, you can
now export the specification to the MATLAB workspace. Exported specifications are
saved as operating point specifications objects (see operspec). Exporting specifications
can be useful when you expect to perform multiple trimming operations using the same
or a very similar set of specifications. Additionally, you can export interactively-edited
operating point specifications when you want to use the findop command to perform
multiple trimming operations with a single compilation of the model (see “Operating
point calculation (trimming) from multiple specifications with only one model
compilation” on page 11-2).

You can also import saved operating point specifications to the Linear Analysis Tool and
use them to interactively compute trimmed operating points. Importing a specification

R2012b

11-2

https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/generate-matlab-code-for-frequency-response-estimation.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/generate-matlab-code-for-frequency-response-estimation.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/compute-operating-points-for-multiple-specification-sets.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/compute-operating-points-for-multiple-specification-sets.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/findop.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/operspec.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/operspec.html

can be useful when you want to trim a model to a specification that is similar to one you
previously saved. In that case, you can import the specification to the Linear Analysis
Tool and interactively change it. You can then export the modified specification, or
compute a trimmed operating from it.

For more information, see Import and Export Specifications For Operating Point Search.

For more information about operating point specifications, see the operspec andfindop
reference pages.

MATLAB script or function generation from Linear Analysis Tool for
repeated or batch linearization
When you generate MATLAB code for linearization from the Linear Analysis Tool, you
now have a choice of generating a script that uses the current linearization parameters,
or a function that takes parameter values as input. Previously, you could only generate a
MATLAB function with no input parameters.

Generated MATLAB scripts are useful when you want to programmatically reproduce a
result you obtained interactively. A generated MATLAB function allows you to perform
multiple linearizations with systematic variations in linearization parameters such as
operating point (batch linearization).

For more information, see Generate MATLAB Code for Repeated or Batch Linearization.

Print plots to MATLAB figure in Linear Analysis Tool
You can now export a plot from the Linear Analysis Tool to a MATLAB figure window.

For more information, see Print Plot to MATLAB Figure in Linear Analysis Tool.

Commands for setting and querying rate conversion methods in tunable
blocks
New commands allow you to query and specify the rate conversion method that the
slTunable interface uses for converting the sampling time of the parametrization of
tunable blocks in a Simulink model.

• slTunable.getBlockRateConversion — Query rate conversion method of tunable
block

11-3

https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/import-and-export-specifications-for-operating-point-search.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/operspec.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/findop.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/generate-matlab-code-for-linearization.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/visualize-models.html#btmn44z

• slTunable.setBlockRateConversion — Set rate conversion method of tunable
block

These commands are useful, for example, when you use the slTunable interface to tune
a mixed-rate Simulink model, such as a model having a discrete-time controller and a
continuous-time plant. The slTunable interface automatically converts the sampling
times of tunable blocks where necessary. Using
slTunable.setBlockRateConversion, you can control the conversion method that
the slTunable interface uses.

For more information, see:

• Tuning of a Digital Motion Control System
• slTunable.getBlockRateConversion and

slTunable.setBlockRateConversion reference pages

“Ignore saturation when linearizing” checked by default in PID
Controller and PID Controller (2DOF) blocks

The default linearization behavior of the PID Controller and PID Controller (2DOF)
blocks now forces linearization commands to ignore block output limits. Ignoring output
limits allows you to linearize a model around an operating point even if that operating
point causes the PID Controller block to exceed the output limits.

To cause linearization commands not to ignore block output limits, clear the Ignore
saturation when linearizing checkbox in the block dialog box, PID Advanced tab.

showBlockValue renamed to showTunable

The command showBlockValue is now called showTunable. Use showTunable to
obtain the current value of block parametrizations from an slTunable interface.

Compatibility Considerations

Replace instances of showBlockValue in your code with showTunable.

R2012b

11-4

https://www.mathworks.com/help/releases/R2012b/robust/gs/tuning-of-a-digital-motion-control-system.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/sltunable.getblockrateconversion.html
https://www.mathworks.com/help/releases/R2012b/slcontrol/ug/sltunable.setblockrateconversion.html
https://www.mathworks.com/help/releases/R2012b/simulink/slref/pidcontroller.html
https://www.mathworks.com/help/releases/R2012b/simulink/slref/pidcontroller2dof.html

R2012a

Version: 3.5

New Features

Bug Fixes

12

Create Linearization Input/Output Sets in the Linear Analysis Tool

You can now interactively create I/O sets for linearization or frequency response
estimation in the Linear Analysis Tool, without adding linearization points to your
model. Previously, you had to modify your model to interactively create I/O sets.

For more information, see Create Linearization I/O Sets In Linear Analysis Tool.

For more information about using the Linear Analysis Tool, see Linearize at Model
Operating Point and Estimating Frequency Response.

Specify Feedback Sign for getLoopTransfer Without Specifying Loop
Openings

An additional syntax for slTunable.getLoopTransfer allows you to specify the
feedback sign without having to provide an openings argument. Use the syntax

L = getLoopTransfer(ST,location,sign)

to calculate the point-to-point open-loop transfer function at location of the Simulink
model described by the slTunable interface ST. The software uses the sign convention
specified by sign (+1 or –1) to compute L.

Previously, to specify a feedback sign, you had to use the syntax

L = getLoopTransfer(ST,location,openings,sign)

This syntax required you to specify an openings argument to specify sign. The new
syntax allows you to specify sign while using the default loop openings.

For more information, see the slTunable and slTunable.getLoopTransfer reference
pages.

R2012a

12-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsw97v9.html#bs_hlyo
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bso7g6i-2.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bso7g6i-2.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br7o174.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunableclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunable.getlooptransfer.html

R2011b

Version: 3.4

New Features

Bug Fixes

Compatibility Considerations

13

Redesigned Graphical Tool for Improved Linear Analysis Workflows

The new interactive Linear Analysis Tool streamlines workflows for linear analysis tasks
such as finding steady-state operating points (trimming) and linearization.

To access the Linear Analysis Tool:

1 Open a Simulink model.
2 In the Simulink model, select Tools > Control Design > Linear Analysis.

For more information about using the Linear Analysis Tool for operating-point and
linearization workflows, see:

• Steady-State Operating Points
• Linearization

Interactive Frequency Response Estimation and Validation of
Linearization Results

The new interactive Linear Analysis Tool provides a graphical interface for frequency
response estimation.

To access the Linear Analysis Tool:

1 Open a Simulink model.
2 In the Simulink model, select Tools > Control Design > Linear Analysis to

launch the Linear Analysis tool.
3 Click the Frequency Response Estimation tab to begin an estimation task.

For more information about using the Linear Analysis Tool for frequency response
estimation, see Frequency Response Estimation.

Optimization of Model Parameters to Meet Design Requirements
Specified by Model Verification Blocks

If you have Simulink Design Optimization™ software, you can optimize the Simulink
model to meet frequency-domain requirements specified in Model Verification blocks. For
example, you can optimize the linear system to meet Bode magnitude or gain and phase

R2011b

13-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsns8b2.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bso7g6i-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br5s3tf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsmnm85.html#bsmnm_t-1

margin requirements. For more information, see Design Optimization To Meet
Frequency-Domain Requirements (GUI).

You can also include time-domain requirements such as step response characteristics for
optimization. For more information, see Design Optimization to Meet Time- and
Frequency-Domain Requirements.

Automatic Tuning of PID Controller Blocks in a Referenced Model

You can now use the PID Tuner to tune a PID Controller block in a model that is
referenced in one or more open models. When you launch the PID Tuner from a block
within a model reference, the software prompts you to select which of the open models is
the top-level model for analysis and tuning. Previously, the PID Tuner could only use the
model containing the PID Controller block as the top-level model.

For more information, see Tuning a PID Controller Within a Model Reference.

Control System Tuning for Simulink Models with looptune or hinfstruct
Using slTunable Interface

If you have Robust Control Toolbox software, you can use tuning commands, such as
slTunable.looptune and hinfstruct, to tune control systems modeled in Simulink.
The slTunable object provides an interface between your Simulink model and these
commands.

Use slTunable to specify information about your control structure and parametrization.
slTunable also automates tasks such as linearizing the Simulink model, parametrizing
the tunable blocks of your system, and applying tuned parameter values to the model.
After you create and configure an slTunable object for your control architecture, you
can tune the control system using slTunable.looptune or hinfstruct.

For more information, see Tuning Fixed Control Architectures in the Robust Control
Toolbox documentation.

Change in Default Number of Samples in frest.Chirp

The default number of samples (NumSamples) in a frest.Chirp input signal for
frequency response estimation is now given by the formula:

13-3

http://www.mathworks.com/help/releases/R2011b/toolbox/sldo/gs/bs4ow31-1.html
http://www.mathworks.com/help/releases/R2011b/toolbox/sldo/gs/bs4ow31-1.html
http://www.mathworks.com/help/releases/R2011b/toolbox/sldo/ug/bs4oxhe-1.html
http://www.mathworks.com/help/releases/R2011b/toolbox/sldo/ug/bs4oxhe-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zf.html#bs6b4vm-1
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunable.looptune.html
https://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/hinfstruct.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunableclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/frest.chirp.html

4p

Ts FreqRange*min()
.

Ts is the sampling time of the chirp signal. FreqRange is the vector of signal frequencies
of the chirp signal.

This formula returns twice the value returned in previous releases.

For example, if you create a default chirp input signal with the command

input = frest.Chirp

the value of input.NumSamples is 10000, instead of the previous value of 5000.

For more information, see the frest.Chirp reference page.

Compatibility Considerations

If you have scripts that rely on the default NumSamples formula, modify your scripts to
account for the new value.

R2011b

13-4

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/frest.chirp.html

R2011a

Version: 3.3

New Features

Bug Fixes

14

Ability to Select Individual Bus Elements as Linearization Input and
Output Points

Instead of selecting an entire bus, you can now select individual elements of the bus
signal as linearization inputs or outputs (I/Os). By selecting individual bus elements, you
can:

• Obtain the linearization only for the channels of interest.
• Specify multiple I/Os, possibly as different types, in the same bus.

Select individual bus elements as I/Os when you want to:

• Linearize a Simulink model using the GUI or programmatically.
• Visualize time- and frequency-domain response during simulation using the Linear

Analysis Plots blocks.
• Verify frequency-domain characteristics using the Model Verification blocks.

For more information, see Select Individual Bus Elements as Linearization Points and
the linio reference page.

Enhanced LINLFT Command Optionally Returns Linearization of
Excluded Blocks

A new optional output argument to linlft returns the linearization of blocks you
specify for exclusion from the linearized model.

For more information, see the linlft reference page.

Access to Current Linearization of a Simulink Block for Specifying
Custom Linearization

When you use a specification function to specify a custom linearization of a Simulink
block, you can now access the current linearization in your function. The current
linearization is stored in the new BlockLinearization field of the BlockData
structure. The software automatically creates the BlockData structure and passes it to
your block linearization specification function.

R2011a

14-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsw97v9.html#bsw99xd-1
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linio.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linlft.html

For more information and an example showing how to use the BlockLinearization
field of BlockData, see Augmenting the Linearization of a Block.

Enhanced PID Controller Blocks Display Compensator Formula in
Block Dialog Box

The PID Controller and PID Controller (2DOF) blocks now display the current
compensator formula in the block dialog box. This display reflects the current settings for
controller type, controller form, and time domain.

14-3

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bso7mos.html#bsxwoqs
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller2dof.html

R2010b

Version: 3.2

New Features

Bug Fixes

15

New Blocks for Plotting and Verifying Linear System Characteristics of
Simulink Models
This version of Simulink Control Design software provides new blocks for:

• “Plotting Linear System Characteristics of Simulink Models” on page 15-2.
• “Verifying Linear System Characteristics of Simulink Models” on page 15-2.

Plotting Linear System Characteristics of Simulink Models

Simulink Control Design software provides six new blocks in the Linear Analysis Plots
library. Use these blocks to plot the time- and frequency-domain characteristics of a
linear system computed from a nonlinear Simulink model. The linear system is computed
and plotted during simulation at:

• Simulation snapshot times. The default snapshot time is 0.
• Trigger-based simulation events.

You can also use these blocks to specify bounds on the linear system characteristics, and
view the bounds on the plot.

Because these blocks are same as the Model Verification blocks except for the default
settings of the bound parameters, you can optionally use the blocks to verify that the
bounds are satisfied during simulation.

For more information, see:

• Visualize Bode Response of Simulink Model During Simulation
• Linear Analysis Plots block reference pages
• Plotting Linear System Characteristics of a Chemical Reactor demo

Verifying Linear System Characteristics of Simulink Models

Simulink Control Design software provides six new blocks in the Model Verification
library. Use these blocks to verify that the time- and frequency-domain characteristics of
a linear system, computed from a nonlinear Simulink model, satisfy specified bounds
during simulation. For example, you can verify whether the linearized behavior of your
model satisfies upper and lower magnitude bounds on a Bode plot or gain and phase
margins.

You can perform the verification during simulation at:

R2010b

15-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsmnm85.html#bsmnm_t-1
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bso7g6i-2.html#bsok2hw-1
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsmnm85.html#bsmnm98-1
matlab:showdemo('scdcstrpad')

• Simulation snapshot times. The default snapshot time is 0.
• Trigger-based simulation events

Because these blocks are same as the Linear Analysis Plots blocks except for the default
settings of the bound parameters, you can use the blocks to view the bounds on time- and
frequency-domain plots.

You can also use these blocks with the Simulink Model Verification library blocks to
design complex logic for model verification.

If you have Simulink Verification and Validation™ software, you can construct
simulation tests for your model using the Verification Manager.

For more information, see:

• Model Verification in the Simulink Control Design documentation.
• Model Verification block reference pages
• Verifying Frequency-Domain Characteristics of an Aircraft demo

New Tools for Identifying Time-Varying Source Blocks for Frequency
Response Estimation

When you are performing frequency response estimation, time-varying source blocks in
the signal path can skew the results. Previously, to obtain accurate estimation, you
manually identified source blocks and inserted open-loop points in your model to disable
them.

The new frest.findSources command automatically detects time-varying source
blocks in the signal path of the output linearization points in your Simulink model.
Additionally, a new option to the frestimate command, BlocksToHoldConstant,
allows you to disable these blocks during frequency response estimation.

For more information, see the frest.findSources and frestimateOptions reference
pages.

There is also a new Model Advisor check for detecting time-varying source blocks in your
model. For more information about using the Model Advisor, see Consulting the Model
Advisor in the Simulink User's Guide.

15-3

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsmnm85.html#bsmnm98-1
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/f4-4889.html#f4-5733
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsmy7v7.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bsmnm85.html#bsmnm_t-1
matlab:showdemo('scdaircraftpad')
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/frest.findsources.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/frestimateoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html

Tuning Tools Update Workspace Variables That Define Parameters of
Tuned Blocks

When you use Simulink Control Design tools to tune a block with parameters defined as
workspace variables, the software now updates the values of the workspace variables.
This update occurs when you write the compensator design to your Simulink model. The
block remains parametrized by the variables. The software can update variable
parameters that represent numerical values or Simulink.Parameter objects, whether
they reside in the base workspace or the model workspace.

Previously, tuning a block parametrized by workspace variables overwrote the block
parameters with numerical values. Thus, such tuning did not change the value of the
workspace variables.

Enhanced PID Tuner Including New Response Plots

This release introduces several enhancements to the PID Tuner, including:

• New response plot options let you analyze system responses in either time domain
(step plot) or frequency domain (Bode plot). Available responses are reference
tracking, input and output disturbance rejection, controller effort, open loop, and
plant.

• New options when the plant linearizes to zero at the operating point defined in the
Simulink model.

When the plant linearizes to zero on launch of the PID Tuner, the PID Tuner provides
an option to linearize at a different operating point. The PID Tuner also lets you
import an LTI model of your plant, such as a model obtained by frequency response
estimation. Previously, the PID Tuner did not launch when the plant linearized to
zero.

For an example illustrating these options, see the new Simulink Control Design demo,
Designing PID Controller in Simulink with Estimated Frequency Response.

For more information about using the PID Tuner, see Automatic PID Tuning in the
Simulink Control Design User's Guide.

R2010b

15-4

matlab:showdemo('scdenginectrlpidpad.m')
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zf.html

New Demo Illustrating Control Design for a Plant That Has Parameter
Variations

The Reference Tracking of a DC Motor with Parameter Variations demo illustrates
compensator design for a plant that has parameter variations. The demo shows the
following techniques:

• Performing batch linearization to obtain multiple linear models from a single
Simulink model

• Using the new SISO Design Tool ability to analyze a control design for multiple
models simultaneously

15-5

matlab:showdemo('scddcmotorpad.m')

R2010a

Version: 3.1

New Features

Bug Fixes

Compatibility Considerations

16

New Parallel Computing Support For Frequency Response Estimation

If you have the Parallel Computing Toolbox™ software installed, you can use parallel
computing to speed up frequency response estimation.

For more information, see Speeding Up Estimation Using Parallel Computing in the
Simulink Control Design documentation.

New Commands Support Recomputing Frequency Response
Estimation Results at Specific Frequencies

If you use the sinestream input signal for estimation, you can now recompute your
frequency response estimation for only those specific frequencies that do not reach steady
state. Previously, you had to redo the entire estimation if a few frequencies needed
recomputing.

For more information, see Time Response Not at Steady State.

New frest.simcompare Output Argument Returns Simulation Output
Data From Linear System

This release provides enhanced frest.simCompare functionality, which allows the
return of simulated output data. If your linear model uses state-space representation,
you can also return the state vector.

For more information, see the frest.simCompare reference page.

New Options in Simulink Results Viewer GUI for Viewing Frequency
Response Estimation Results

The Simulation Results Viewer GUI, which you display using frest.simView, now
provides additional options for analyzing your frequency response estimation:

• You can now enable phase unwrapping in the frequency response plot. To unwrap
phase, right-click the Bode plot, and select Unwrap Phase.

• You can also import frequency response estimation results into an open Simulation
Results Viewer, which replaces the existing results. Previously, you had to open a new

R2010a

16-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bscm3us.html#bsb7a1_
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br7o18v-1.html#br7sryw
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/frest.simcompare.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/frest.simview.html

Viewer each time you viewed estimation results. To import results, select File >
Import in the Simulation Results Viewer.

New Option for Labeling Bus Signal I/O Names in the SISO Design
Task

You can now configure the SISO Design Task to automatically label model I/Os using bus
signal names. Model I/O labels describe available loops in the Graphical Tuning tab and
label response plots in the Analysis Plots tab of the SISO Design Task GUI. Previously,
labels for bus signals were based on the block and port path, or the Simulink signal
name.

To use this option, select Tools > Options in the SISO Design Task GUI, and enable
Use bus signal names to label model I/O.

Existing Simulink Blocks Now Have Analytic Jacobians

The following Simulink blocks now have Analytic Jacobians, which are optimized for
memory consumption in large-scale models:

• Switch
• Multiport Switch
• Math Function (Transpose and Hermitian Transpose)

For more information on each block, see the block reference pages.

Change in Format of Time Series in frestimate Output

When you use the simout output of the frestimate command, you obtain a cell array
of Simulink.Timeseries objects. Previously, the time dimension was always the first
dimension of each Simulink.Timeseries object.

As of R2010a, the time dimension of each Simulink.Timeseries in simout is:

• The first dimension, if the time series is 2-D
• The last dimension, if the time series is 3-D or higher

16-3

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html

Compatibility Considerations

If you have scripts that run frestimate on a model having an output point on a vector
or matrix signal and perform operations on the resulting 3-D or higher-dimensional
Simulink.Timeseries object in simout, modify your scripts to reflect the new
placement of the time dimension in the time series.

For additional information, see:

• frestimate reference page
• Simulink.Timeseries reference page

R2010a

16-4

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/frestimate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.timeseries.html

R2009b

Version: 3.0

New Features

Bug Fixes

17

New GUI for Tuning New PID Controller Blocks

You can automatically tune the new Simulink PID Controller blocks in the PID Tuner
GUI R2009b introduces. You launch the PID Tuner directly from the PID block dialogs
boxes. These blocks are available in the Continuous and Discrete Simulink libraries.

For more information on tuning PID Controller using the PID Tuner, see Automatic PID
Tuning.

New Automated PID Tuning Algorithm

You can now tune compensators using a new automated PID tuning algorithm called
Robust Response Time, which is available in the SISO Design Task. You specify the
open-loop bandwidth and phase margin, and the software computes PID parameters to
robustly stabilize your system.

For information on tuning compensators using automated tuning methods, see
Completing the Design.

Ability to Compute Frequency Response of Simulink Models

You can now compute the frequency response of a Simulink model using simulation. You
use new commands to easily create input signals and simultaneously simulate and
estimate the frequency response without changing your model. You can also use this
capability to validate the accuracy of exact linearizations.

Ability to Specify the Linearization of Simulink Blocks

You can now specify the linearization of Simulink blocks, subsystems, and model
references without having to replace any block in your model. You can specify the
linearizations as LTI models or Robust Control Toolbox uncertain models.

Ability to Design Compensators for Plant Models With Time Delays

You can now design compensators for plants with exact time delay representations.
Previously, you had to specify a Padé approximation before designing compensators.

R2009b

17-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zp.html#bql_wzz

For more information on designing compensators for plants with time delays, see
Designing Compensators for Plants with Time Delays.

New Commands to More Efficiently Compute Multiple Linearizations

You can now more efficiently compute multiple linearizations for large models when only
a few blocks or model references change per linearization. You linearize the fixed portion
of the model once using linlft and linearize the varying portion multiple times. Then,
you combine the results using linlftfold to obtain linearizations equal to those you
would receive if you linearized the entire model multiple times.

For more information, see the linlft and linlftfold reference pages.

Ability to Set Default Plot Type for Linear Analysis Results from GUI

You can now set the default plot type for viewing linear analysis results computed in the
Control and Estimation Tools Manager. This setting applies to all future Control and
Estimation Tools Manager sessions.

To set this option in the Simulink Control Design Preferences, select File > Preferences
in the Control and Estimation Tools Manager.

17-3

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zp.html#br6j1m5
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linlft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linlftfold.html

R2009a

Version: 2.5

New Features

Bug Fixes

18

Ability to Generate MATLAB Code from the GUI for Creating Operating
Points and Linearizing Models

You can now generate MATLAB code reflecting the configuration in the GUI when
creating operating points and linearizing models.

Ability to Tune Additional Blocks

You can now tune the following blocks:

• Blocks that you discretized using the Simulink Model Discretizer
• Blocks in the Simulink Extras library that specify initial states or outputs

For information about how to tune these blocks, see Selecting Blocks to Tune in the
Simulink Control Design documentation.

New Option for Labeling Bus Signal I/O Names in Linearization Results

You can now compute linear models that show the bus signal names for linearization I/O
points located on buses. You can select this option using the following:

• Linearization Options GUI
• linoptions command

R2009a

18-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zp.html#bql_wsk
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linoptions.html

R2008b

Version: 2.4

New Features

Bug Fixes

19

New Upsampling Option for Rate Conversion When Linearizing
Simulink Models

Version 2.4 includes an upsampling rate conversion method for linearization. This
method upsamples discrete-time LTI systems at any sampling rate that is an integer-
value-times faster than the sampling rate of the original system. You can select the
upsampling rate conversion method in the following ways:

• Using the linearization options GUI
• From the command line using linoptions

For more information on the upsampling rate conversion method, see the linoptions
reference page.

Ability to Specify State Order of Linearized Models from the Command
Line

You can now specify the order of the states in your linearized model directly from the
command line using the linearize command. Previously, you could only specify state
order using the GUI.

For more information on specifying state order from the command line, see the
linearize reference page.

Ability to Filter the Linearization Inspector to Show Blocks in the
Linearization Path

You can now filter the list of blocks in the Linearization Inspector to show only the blocks
in the linearization path. This filtering makes it easier for you to find blocks in the
linearization path that you want to inspect.

Ability to Disable the Calculation of Linearization Diagnostics and
Inspector Data in the GUI

You can now disable the calculation of the linearization inspector and diagnostics
information when you linearize using the GUI. This capability allow you to choose when
you want to calculate diagnostic information.

R2008b

19-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linearize.html

R2008a

Version: 2.3

New Features

Bug Fixes

20

New Diagnostic Messages Help You Troubleshoot Linearization
Results

You can now view diagnostic messages for your linearized model that help you diagnose
and troubleshoot linearization results. These messages identify blocks in your model that
encounter the following block issues during linearization:

• Blocks that have been marked as not supported for linearization
• Blocks with linearization configuration warning messages
• Blocks without pre-programmed exact Jacobian that linearize using numerical

approximation

Ability to Find Operating Points for Simscape Models

You can now find operating points for models that include Simscape and SimHydraulics®
blocks using the Simulink Control Design findop command.

For more information on finding operating point for Simscape Models, see the Simscape
documentation.

Updated Error and Warning Message System

The Simulink Control Design error and warning IDs and messages have been updated. If
you use error and warning IDs in your code, you must update your code to reflect the new
IDs.

R2008a

20-2

R2007b

Version: 2.2

New Features

Bug Fixes

21

Ability to Linearize Models with Model-Reference Blocks by Any
Linearization Method

You can now perform any type of linearization for models containing Model blocks that
reference other Simulink models.

Previously, you could only perform numerical perturbation linearization for models
containing Model blocks. Now, you can also perform block-by-block linearization for such
models when you set the simulation mode of the Model blocks to Normal.

Ability to Design Compensators for Models Containing Model-
Reference Blocks

You can now design compensators for tunable blocks inside external models referenced
by your model. Your model references such external models by using Model blocks. You
can also update the tunable blocks in the external model with the new compensator
designs.

To view and select tunable blocks for compensator design from the referenced model, set
the simulation mode of the Model block to Normal.

For more information about the types of blocks that you can tune, see Selecting Blocks to
Tune in the Simulink Control Design documentation.

Ability to Generate Linearized Models with Exact Time-Delay
Representations

You can now use the Simulink Control Design software to compute linearized models
with exact time-delay representations. Time delays in the original nonlinear model can
result from any of the following blocks:

• Transport Delay
• Variable Time Delay
• Variable Transport Delay
• Unit Delay
• Integer Delay

R2007b

21-2

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/model.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/model.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zp.html#bql_wsk
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zp.html#bql_wsk

Previously, you could only achieve approximate linearizations of models with continuous
time delays using a Padé approximation.

Ability to Linearize Periodic Function-Call Subsystems

You can now linearize periodic function-call subsystems with a constant sample time as
discrete subsystems. You must set the sample time of the function-call trigger block to
equal the sample time of the function-call generator block.

For more information on function-call subsystems, see Function-Call Subsystems in the
Simulink documentation.

21-3

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqrmu3t-1.html

R2007a

Version: 2.1

New Features

Bug Fixes

22

Ability to Linearize Using an Operating Point Specified Directly in a
Model
You can use the Simulink Control Design software to linearize around any operating
point that you specify directly in a Simulink model. This capability allows you to make
changes to a model and then perform a linearization around the newly specified
operating point with the click of a single button. Previously, this same task required two
steps: creating a new operating point and then linearizing around this operating point.

There are two ways to linearize around an operating point specified directly in the model:

• From the Control and Estimation Tools Manager
• Using linearize

Ability to Capture Linearization Snapshots in GUI
You can use the Control and Estimation Tools Manager to linearize at snapshots of your
model operating point at the following simulation points:

• Specified simulation times, such as when the simulation reaches a steady state
solution

• Events during a specified simulation interval

As in prior releases, you can use linearize to perform linearization at snapshots in
your model operating point, as described in linearize in the reference pages.

Ability to Perform Control Design at Snapshots in GUI
You can use the Control and Estimation Tools Manager to perform control design at
snapshots of your model operating point at the following simulation points:

• Specified simulation times, such as when the simulation reaches a steady state
solution

• Events during a specified simulation interval

Ability to Retrieve Stored Compensator Designs
When you design a compensator using the SISO design tool, you can store the current
design and then continue making changes to this design. A new button called Retrieve

R2007a

22-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linearize.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/linearize.html

Design lets you retrieve the stored design at any time by undoing the design changes
you made since you last stored the design. For more information on retrieving stored
compensator designs, see Storing and Retrieving Designs in the Simulink Control Design
documentation.

22-3

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zp.html#bqnp05s

R2006b

Version: 2.0.1

Bug Fixes

23

R2006a

Version: 2.0

New Features

Bug Fixes

24

Compensator Design in Simulink Is Now Supported

This release provides new tools to streamline the workflow for designing Single-Input
Single-Output (SISO) control loops directly in Simulink. In previous releases, designing a
compensator was a multistep process that involved several tools.

The new tools support any linearizable control architecture, such as single loops,
multiple loops, and cascaded loops. With the new tools, you simply select the blocks you
want to tune. Then, the Simulink Control Design software automatically analyzes your
model to identify the relevant control loops and opens a preconfigured session of the
SISO Design Tool (in the Control System Toolbox™ software). For more information, see
“Designing Compensators” in the Simulink Control Design documentation.

Supported tunable SISO Simulink blocks include Gain, Transfer Function, Zero-Pole-
Gain, State-Space, and PID blocks.

In the SISO Design Tool you can

• Graphically tune multiple SISO loops in a single GUI.
• Gain visual insight into loop interactions and coupling effects.
• Focus the analysis on a specific loop in a multiloop design by removing the effect of

other feedback loops.
• Generate first-cut compensator designs using systematic design algorithms, such as

Ziegler-Nichols PID tuning, IMC design, or LQG design.
• Optimize linear responses to meet time and frequency-based design constraints

(requires the Simulink Response Optimization™ software).
• Directly tune Simulink block parameters, such as PID gains, zero-pole-gain

representations, and masked blocks.
• Tune continuous or discrete control loops.
• Examine the closed-loop response of any portion of a model.

After a design is completed, you can write the tuned parameter values back to your
model for verification with the full nonlinear system.

R2006a

24-2

https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/bqkrt41.html
https://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zp.html#bqoy9lz

R14SP3

Version: 1.3

New Features

Bug Fixes

25

Control and Estimation Tools Manager Enhanced

You can copy and edit operating points within the Control and Estimation Tools
Manager. .

You can initialize a model for simulation using operating points from within the Control
and Estimation Tools Manager.

Support for Operating Point Search and Linearization of Models with
Model Reference Blocks

You can linearize and compute operating points for models that reference other models
using the Model block. Linearization of model reference models must use the numerical
perturbation linearization algorithm. This algorithm accepts state and input
perturbation values in the form of an operating point object.

R14SP3

25-2

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/model.html

R14SP2

Version: 1.2

New Features

Bug Fixes

26

Context-Sensitive Help Added

Access context-sensitive help for the Linearization, Operating Point Search, and
Linearization State Ordering Options window of the Control and Estimation Tools
Manager. To access help on a field within the options window, right-click the option's
label and select What's this? from the context menu. Help for the option will appear in
this window.

View Linearizations in the Control and Estimation Tools Manager

You can view state space, transfer function, and zero-pole gain representations of
linearized models within the Control and Estimation Tools Manager without exporting to
the workspace. These linearized models appear in the linearization summary pane of the
Control and Estimation Tools Manager.

Discretization Methods Added

You can select from three different discretization methods for linearization of multirate
and hybrid models.

List of Blocks with Preprogrammed Analytic Jacobians Added

You can view a complete list of blocks indicating which blocks have preprogrammed
analytic Jacobians for use with the block-by-block analytic linearization algorithm.

Block Name Readability Improved

You can use either truncated block names or full block names in the state space matrices
of a linearized model, and within the LTI Viewer, to improve readability.

R14SP2

26-2

